Files
spbt/compute_errors_bt.for
2025-05-06 22:04:43 +03:00

123 lines
3.6 KiB
Fortran

! *** generated by SAPFOR with version 2412 and build date: Apr 29 2025 22:44:14
! *** Enabled options ***:
! *** maximum shadow width is 50 percent
! *** generated by SAPFOR
!---------------------------------------------------------------------
!---------------------------------------------------------------------
!---------------------------------------------------------------------
! this function computes the norm of the difference between the
! computed solution and the exact solution
!---------------------------------------------------------------------
subroutine error_norm_bt (rms)
include 'header3d_bt.h'
integer :: i,j,k,m,d
double precision :: xi,eta,zeta,u_exact(5),rms(5),add
double precision :: r1,r2,r3,r4,r5
do m = 1,5
rms(m) = 0.0d0
enddo
r1 = 0.0d0
r2 = 0.0d0
r3 = 0.0d0
r4 = 0.0d0
r5 = 0.0d0
! DVM$ PARALLEL (K,J,I) ON U(*,I,J,K), REDUCTION (SUM(R1),SUM(R2),SUM(R3)
! DVM$&,SUM(R4),SUM(R5)),PRIVATE (U_EXACT,XI,ETA,ZETA,M,ADD)
! DVM$ REGION
do k = 0,problem_size - 1
do j = 0,problem_size - 1
do i = 0,problem_size - 1
zeta = dble (k) * dnzm1
eta = dble (j) * dnym1
xi = dble (i) * dnxm1
! call exact_solution_bt(xi, eta, zeta, u_exact)
do m = 1,5
u_exact(m) = ce(m,1) + xi * (ce(m,2) + xi * (ce(m,5) +
& xi * (ce(m,8) + xi * ce(m,11)))) + eta * (ce(m,3) + eta * (ce(m,6
&) + eta * (ce(m,9) + eta * ce(m,12)))) + zeta * (ce(m,4) + zeta *
&(ce(m,7) + zeta * (ce(m,10) + zeta * ce(m,13))))
enddo
add = u(1,i,j,k) - u_exact(1)
r1 = r1 + add * add
add = u(2,i,j,k) - u_exact(2)
r2 = r2 + add * add
add = u(3,i,j,k) - u_exact(3)
r3 = r3 + add * add
add = u(4,i,j,k) - u_exact(4)
r4 = r4 + add * add
add = u(5,i,j,k) - u_exact(5)
r5 = r5 + add * add
enddo
enddo
enddo
! DVM$ END REGION
rms(1) = r1
rms(2) = r2
rms(3) = r3
rms(4) = r4
rms(5) = r5
do m = 1,5
do d = 1,3
rms(m) = rms(m) / dble (grid_points(d) - 2)
enddo
rms(m) = dsqrt (rms(m))
enddo
return
end
!---------------------------------------------------------------------
!---------------------------------------------------------------------
subroutine rhs_norm_bt (rms)
include 'header3d_bt.h'
integer :: i,j,k,d,m
double precision :: rms(5),add,r1,r2,r3,r4,r5
r1 = 0.0d0
r2 = 0.0d0
r3 = 0.0d0
r4 = 0.0d0
r5 = 0.0d0
! DVM$ PARALLEL (K,J,I) ON RHS(*,I,J,K), REDUCTION (SUM(R1),SUM(R2),SUM(R
! DVM$&3),SUM(R4),SUM(R5)),PRIVATE (ADD)
! DVM$ REGION
do k = 1,problem_size - 2
do j = 1,problem_size - 2
do i = 1,problem_size - 2
add = rhs(1,i,j,k)
r1 = r1 + add * add
add = rhs(2,i,j,k)
r2 = r2 + add * add
add = rhs(3,i,j,k)
r3 = r3 + add * add
add = rhs(4,i,j,k)
r4 = r4 + add * add
add = rhs(5,i,j,k)
r5 = r5 + add * add
enddo
enddo
enddo
! DVM$ END REGION
rms(1) = r1
rms(2) = r2
rms(3) = r3
rms(4) = r4
rms(5) = r5
do m = 1,5
do d = 1,3
rms(m) = rms(m) / dble (grid_points(d) - 2)
enddo
rms(m) = dsqrt (rms(m))
enddo
return
end