123 lines
3.6 KiB
Fortran
123 lines
3.6 KiB
Fortran
|
|
! *** generated by SAPFOR with version 2412 and build date: Apr 29 2025 22:44:14
|
|
! *** Enabled options ***:
|
|
! *** maximum shadow width is 50 percent
|
|
! *** generated by SAPFOR
|
|
|
|
!---------------------------------------------------------------------
|
|
!---------------------------------------------------------------------
|
|
!---------------------------------------------------------------------
|
|
! this function computes the norm of the difference between the
|
|
! computed solution and the exact solution
|
|
!---------------------------------------------------------------------
|
|
subroutine error_norm_bt (rms)
|
|
|
|
include 'header3d_bt.h'
|
|
integer :: i,j,k,m,d
|
|
double precision :: xi,eta,zeta,u_exact(5),rms(5),add
|
|
double precision :: r1,r2,r3,r4,r5
|
|
do m = 1,5
|
|
rms(m) = 0.0d0
|
|
enddo
|
|
r1 = 0.0d0
|
|
r2 = 0.0d0
|
|
r3 = 0.0d0
|
|
r4 = 0.0d0
|
|
r5 = 0.0d0
|
|
|
|
! DVM$ PARALLEL (K,J,I) ON U(*,I,J,K), REDUCTION (SUM(R1),SUM(R2),SUM(R3)
|
|
! DVM$&,SUM(R4),SUM(R5)),PRIVATE (U_EXACT,XI,ETA,ZETA,M,ADD)
|
|
! DVM$ REGION
|
|
do k = 0,problem_size - 1
|
|
do j = 0,problem_size - 1
|
|
do i = 0,problem_size - 1
|
|
zeta = dble (k) * dnzm1
|
|
eta = dble (j) * dnym1
|
|
xi = dble (i) * dnxm1
|
|
|
|
! call exact_solution_bt(xi, eta, zeta, u_exact)
|
|
do m = 1,5
|
|
u_exact(m) = ce(m,1) + xi * (ce(m,2) + xi * (ce(m,5) +
|
|
& xi * (ce(m,8) + xi * ce(m,11)))) + eta * (ce(m,3) + eta * (ce(m,6
|
|
&) + eta * (ce(m,9) + eta * ce(m,12)))) + zeta * (ce(m,4) + zeta *
|
|
&(ce(m,7) + zeta * (ce(m,10) + zeta * ce(m,13))))
|
|
enddo
|
|
add = u(1,i,j,k) - u_exact(1)
|
|
r1 = r1 + add * add
|
|
add = u(2,i,j,k) - u_exact(2)
|
|
r2 = r2 + add * add
|
|
add = u(3,i,j,k) - u_exact(3)
|
|
r3 = r3 + add * add
|
|
add = u(4,i,j,k) - u_exact(4)
|
|
r4 = r4 + add * add
|
|
add = u(5,i,j,k) - u_exact(5)
|
|
r5 = r5 + add * add
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
! DVM$ END REGION
|
|
rms(1) = r1
|
|
rms(2) = r2
|
|
rms(3) = r3
|
|
rms(4) = r4
|
|
rms(5) = r5
|
|
do m = 1,5
|
|
do d = 1,3
|
|
rms(m) = rms(m) / dble (grid_points(d) - 2)
|
|
enddo
|
|
rms(m) = dsqrt (rms(m))
|
|
enddo
|
|
return
|
|
end
|
|
|
|
|
|
!---------------------------------------------------------------------
|
|
!---------------------------------------------------------------------
|
|
subroutine rhs_norm_bt (rms)
|
|
|
|
include 'header3d_bt.h'
|
|
integer :: i,j,k,d,m
|
|
double precision :: rms(5),add,r1,r2,r3,r4,r5
|
|
r1 = 0.0d0
|
|
r2 = 0.0d0
|
|
r3 = 0.0d0
|
|
r4 = 0.0d0
|
|
r5 = 0.0d0
|
|
|
|
! DVM$ PARALLEL (K,J,I) ON RHS(*,I,J,K), REDUCTION (SUM(R1),SUM(R2),SUM(R
|
|
! DVM$&3),SUM(R4),SUM(R5)),PRIVATE (ADD)
|
|
! DVM$ REGION
|
|
do k = 1,problem_size - 2
|
|
do j = 1,problem_size - 2
|
|
do i = 1,problem_size - 2
|
|
add = rhs(1,i,j,k)
|
|
r1 = r1 + add * add
|
|
add = rhs(2,i,j,k)
|
|
r2 = r2 + add * add
|
|
add = rhs(3,i,j,k)
|
|
r3 = r3 + add * add
|
|
add = rhs(4,i,j,k)
|
|
r4 = r4 + add * add
|
|
add = rhs(5,i,j,k)
|
|
r5 = r5 + add * add
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
! DVM$ END REGION
|
|
rms(1) = r1
|
|
rms(2) = r2
|
|
rms(3) = r3
|
|
rms(4) = r4
|
|
rms(5) = r5
|
|
do m = 1,5
|
|
do d = 1,3
|
|
rms(m) = rms(m) / dble (grid_points(d) - 2)
|
|
enddo
|
|
rms(m) = dsqrt (rms(m))
|
|
enddo
|
|
return
|
|
end
|
|
|